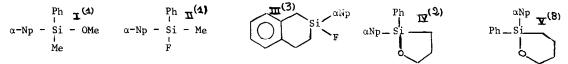
LiA1H₄ ATTACK AT A SILICON CENTER : EVIDENCE FOR ION-PAIR DISSOCIATION AS CONTROLLING FACTOR OF THE STEREOCHEMISTRY R.J.P. CORRIU, J.M. FERNANDEZ and C. GUERIN

Ribill Concept Sine Plantable and St Commit

Laboratoire des Organométalliques - Université des Sciences et Techniques du Languedoc (Equipe de Recherche associée au C.N.R.S. N°554) - Place Eugène Bataillon - 34060 Montpellier-cédex (France)

The stereochemistry of the reduction of the \exists Si-X bonds by LiAlH₄ depends on the nature of the leaving group : retention of configuration is the normal course for the reduction of \exists Si-OR bonds, whereas \exists Si-F and \exists Si-Cl bonds are displaced with inversion in ethyl ether (1,2,3,4). It depends also on the nature of the solvent : a change from ethyl ether to tetrahydrofuran results in a change in stereochemistry of hydrogen-hydrogen and hydrogen-deuterium exchanges at silicon (5). This change is parallel to a large increase in the rate of exchange.

Recent stereochemical and kinetic data for reactions between hard organolithiums (nBuLi or EtLi) and some fluoro-or methoxy-silanes led us to the following conclusions (6) :


1) - the influence of the ion-pair dissociation on the stereochemistry and on the reaction rate is very important : complexation reagents which favor the dissociation of ion-pairs lead to a displacement of the stereochemistry towards retention and to a 10^3 -or 10^4 -fold rate acceleration.

2) - The = Si-OMe bond is insensitive to the electrophilic assistance by Li⁺ cation.

3) - The Li⁺ cation provides some external assistance to the cleavage of the \equiv Si-F bonds, increasing at some extend the proportion of inversion.

Moreover Seyden-Penne et al. noted that LiAlH_4 leads to preferential attack at carbon-4 of α -enones when the lithium cation is trapped by a specific cryptate(7) it shows clearly the soft electronic character of the AlH_4 anion. All these implications and the very close parallel between the stereochemistry of S_N^2 reactions at silicon and the regioselectivity of attack on α -enones (8) suggest us to study more in details the stereochemical behaviour of LiAlH_4 . The data are given in the following table :

Runs	Reagent ^(a)	Solvent	Predominant stereochemistry ^(d)				
Runs N°			I	II	III	IV	v
1	LIA1H4/LIBr ^(b)	Et ₂ 0	98% RN	62% RN	95% RN	$\left[\alpha\right]_{\mathrm{D}}$ = +13° RN	$\left[\alpha\right]_{\mathrm{D}} = -7^{\circ} \mathrm{RN}$
2	LIA1H4	н	95% RN ⁽¹⁾			$[\alpha]_{D}^{=} +13^{\circ} RN^{(2)}$	$\begin{bmatrix} \alpha \end{bmatrix}_{365}^{2} = -36,5^{\circ} \\ \begin{bmatrix} \alpha \end{bmatrix}_{D}^{2} = -7^{\circ}_{RN}(9) \\ \begin{bmatrix} \alpha \end{bmatrix}_{365}^{2} = -35,5^{\circ} \end{bmatrix}$
3	$LiA1H_4/KLi^{+(c)}$ $R_4N^{+}A1H_4^{-}$ (a)	11	75% IN	-	65% IN	$\left[\alpha\right]_{\rm D} = -13^{\circ}$ IN	$\left[\alpha\right]_{D}^{=} + 2^{\circ} IN$
4	$R_{4}N^{+}A1H_{4}^{-}$ (a)	benzene	65% RN	-	58% IN	$\begin{bmatrix} \alpha \end{bmatrix}_{D} = -13^{\circ} \text{ IN} \\ \begin{bmatrix} \alpha \end{bmatrix}_{D} = +5^{\circ} \text{ RN} \end{bmatrix}$	-

(a)- LiAlH₄ solutions were prepared by refluxing LiAlH₄ in ethyl ether, followed by filtration under N₂ atmosphere. The reduction reactions were carried out with $[R_3SiX]/[LiAlH_4] = 2 - R_4N^+ AlH_4 (NR_4^+ = (tri-n.octyl)_3 n.propyl ammonium cation) was prepared as described in litterature (10). - (b) - [LiBr]/[LiAlH_4] = 10; these reactions were carried out under homogeneous conditions. - (c) - K_{Li}+ = Kryptofix 211, specific for Li⁺ cation (11). - (d) - The <math>[\alpha]_D$ of optically pure R₃Si-H, corresponding respectively to I, II and III are known (1,3); a predominant stereochemistry of 90 % inversion indicates a reaction path which is 90 % inversion the corresponding $[\alpha]_D$: a RN or IN proportion cannot be given and the predominant stereochemistry was determined by chemical correlations (2,9).

The experimental data enable us to conclude that the ionic interaction between Li⁺ and AlH_{λ} is the controlling factor of the stereochemistry :

1) - The complexation of Li⁺ by a cryptand giving free anions AlH_4^- (11), promotes inversion of configuration : an increase of the ionic radius of the cation (NR_4^+ in runs 4) leads to a similar displacement. This behaviour is opposite to that of hard alkyllithiums for which we observed an increase of retention when Li⁺ was trapped. It is consistent with a soft electronic character for the naked AlH_4^- anion (predominant inversion for the displacement of ΞSi -F or ΞSi -OR bonds = 1.4 addition on α -enones (8)).

2) - Added LiBr salt promotes in all cases (runs 1) retention of configuration : the most significant stereochemical displacements are observed with the fluorosilanes II and III. We have previously stated that the Li⁺ cation provides some external assistance to the cleavage of the \equiv Si-F bond : it increases the ratio of inversion. We observe here the opposite effect : thus we can conclude that the main effect of LiBr is not the complexation of the organosilane. We think that it increases the degree of aggregation of the hydride molecules : the negative charge of the anion is more spread and the reducing agent LiAlH₄/LiBr behaves as a hard reagent.

References

```
1 - a) L.H. Sommer, "Stereochemistry, Mechanism and Silicon", Mc Graw-Hill, New-York, 1965.
    b) L.H. Sommer, Intrascience Chem. Rept., 1973, 7, 1.
 2 - a) R. Corriu, C. Guérin and J. Massé, J. Chem. Research(S), 1977, 160.
    b) R. Corriu, C. Guérin and J. Massé, J. Chem. Research(M), 1977, 1873.
 3 -
       R. Corriu and J. Massé, Bull. Soc. Chim. Fr., 1969, 3491.
 4 -
       R. Corriu and G. Royo, J. Organometal. Chem., 1968, 14, 291.
 5 -
       G.J.D. Peddle, J.M. Shafir and G. Mc Geachin, J. Organometal. Chem., 1968, 14, 505.
 6 -
       R. Corriu, J.M. Fernandez and C. Guérin, J. Organometal. Chem., 1978, 152, 21.
 7 –
       A. Loupy and J. Seyden-Penne, results to be published.
 8 -
       R. Corriu and C. Guérin, J. Organometal. Chem., 1978, 144, 165.
 9 -
       R. Corriu and C. Guérin, submitted to publication.
10 -
        S.I. Morrow and A.R. Young, Inorg. Chem., 1965, 4, 759.
       J.M. Lehn, J. Simon and W. Wagner, Angew. Chem., 1973, 85, 621.
11 -
```

(Received in UK 26 June 1978; accepted for publication 7 July 1978)